题目内容
如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:
(1)△AEF≌△CEB;
(2)AF=2CD.
如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度.
P为等边△ABC内的一点,PA=10,PB=6,PC=8,将△ABP绕点B顺时针旋转60°到△CBP′位置.
(1)判断△BPP′的形状,并说明理由;
(2)求∠BPC的度数.
∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则( ).
A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5
甲、乙两家超市同价销售同一款可拆分式驱蚊器,1套驱蚊器由1个加热器和1瓶电热蚊香液组成.电热蚊香液作为易耗品可单独购买,1瓶电热蚊香液的售价是1套驱蚊器的.已知电热蚊香液的利润率为20%,整套驱蚊器的利润率为25%.张阿姨从甲超市买了1套这样的驱蚊器,并另外买了4瓶电热蚊香液,超市从中共获利10元.
(1)求1套驱蚊器和1瓶电热蚊香液的售价;
(2)为了促进该款驱蚊器的销售,甲超市打8.5折销售,而乙超市采用的销售方法是顾客每买1套驱蚊器送1瓶电热蚊香液.在这段促销期间,甲超市销售2000套驱蚊器,而乙超市在驱蚊器销售上获得的利润不低于甲超市的1.2倍.问乙超市至少销售多少套驱蚊器?
若△ABC的周长为12,∠A和∠B的平分线相交于点P,点P到边AB的距离为1,则△ABC的面积为 .
记sn=a1+a2+…+an,令Tn=,则称Tn为a1,a2,…,an这列数的“凯森和”.已知a1,a2,…,a500的“凯森和”为2004,那么16,a1,a2,…,a500的“凯森和”为( )
A.2014 B.2016 C.2017 D.2019
如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;
(2)△AEF与四边形ABCD重叠部分的面积为 .
若的值在两个整数a与a+1之间,则a的值为( )。
A. 3 B. 4 C. 5 D. 6