题目内容
已知关于x的方程mx2-(3m-1)x+2m-2=0
(1)求证:无论m取任何实数时,方程恒有实数根.
(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
(1)分两种情况讨论:
①当m=0 时,方程为x-2=0,∴x=2 方程有实数根
②当m≠0时,则一元二次方程的根的判别式
△=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0
∵不论m为何实数,△≥0成立,∴方程恒有实数根
综合①②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.
(2)设x1、x2为抛物线y= mx2-(3m-1)x+2m-2与x轴交点的横坐标.
则有x1+x2=
,x1·x2=![]()
由| x1-x2|=
=
=
=
,
由| x1-x2|=2得
=2,∴
或
,∴m=1或m=![]()
∴所求抛物线的解析式为:y1=x2-2x或y2=
x2+2x-![]()
练习册系列答案
相关题目
已知关于x的方程mx+2=2(m-x)的解满足方程|x-
|=0,则m的值为( )
| 1 |
| 2 |
A、
| ||
| B、2 | ||
C、
| ||
| D、3 |