题目内容

已知关于x的方程mx2-(3m-1)x+2m-2=0

(1)求证:无论m取任何实数时,方程恒有实数根.

(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.

(1)分两种情况讨论:

①当m=0 时,方程为x-2=0,∴x=2 方程有实数根

②当m≠0时,则一元二次方程的根的判别式

△=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0

∵不论m为何实数,△≥0成立,∴方程恒有实数根

综合①②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.

(2)设x1x2为抛物线y= mx2-(3m-1)x+2m-2与x轴交点的横坐标.

则有x1+x2=x1·x2=

由| x1x2|====

由| x1x2|=2得=2,∴,∴m=1或m=

∴所求抛物线的解析式为:y1=x2-2xy2=x2+2x

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网