题目内容
已知正六边形的周长是12,则它的半径是 .
若n边形恰好有n条对角线,则n为( )
A.4 B.5 C.6 D.7
在平面直角坐标系中,将抛物线y=x2﹣4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为 .
永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)
(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;
(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?
(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?
抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:
①abc>0;
②a+b>0;
③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;
④a(m﹣1)+b=0;
⑤若c≤﹣1,则b2﹣4ac≤4a.
其中结论错误的是 .(只填写序号)
一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是( )
A. B. C. D.1
(2015秋•石柱县期末)已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0,
(1)求(a+b)2015的值.
(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.
(2010•莱芜)如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )
A.ab>0 B.a﹣b>0 C.a+b>0 D.|a|﹣|b|>0
(2015秋•苍南县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是 .