题目内容
因式分【解析】a2-2a= .
二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )
A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8
如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.
如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点
B(x,1)与x轴,y轴分别交于点H,F,抛物线y=-x2+bx+c顶点E在直线l上.
(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;
(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;
(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.
如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽BEF;④S△BEF=.在以上4个结论中,其中一定成立的 (把所有正确结论的序号都填在横线上)
如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )
A.1对 B.2对 C.3对 D.4对
下列计算正确的是( )
A.
B.
C.
D.
二次函数y=ax2+bx+c图象如图,下列正确的个数为( )
①bc>0;
②2a-3c<0;
③2a+b>0;
④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;
⑤a+b+c>0;
⑥当x>1时,y随x增大而减小.
A.2 B.3 C.4 D.5
化简的结果是 .