题目内容
已知一次函数y=kx+b的图象经过点M(0,2),N(1,3).
(1)求一次函数的解析式.
(2)求出一次函数与x轴的交点坐标.
已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.不确定
如图,点A、B、C在⊙O上,∠C=115°,则∠AOB= .
如图,已知△ABC,以点O为位似中心画△DEF,使它与△ABC相似,且相似比为2.
如图,已知抛物线过点A (6,0) ,B( -2,0) ,C (0,-3) C .
(1)求此抛物线的解析式;
(2)若点 H 是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在x轴上,点G 为该抛物线的顶点,且∠GQA=45°,求点Q的坐标.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设,,.
特例探索
(1)如图1,当∠=45°,时,= , ;
如图2,当∠=30°,时, = , ;
归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,
并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD=,AB=6.
求AF的长.
给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.