题目内容
在有理数运算时,我们发现了:| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
(1)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2007×2008 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 49×51 |
分析:(1)分子为1,分母是两个连续自然数的乘积,第n项为
=
-
,所以原式=1-
+
-
+
-
+…
-
=1-
=
.
(2)分子为1,分母是两个连续奇数的乘积,第n项为
=
(
-
),所以原式=
(1-
+
-
+…+
-
)=
(1-
)=
.
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2007 |
| 1 |
| 2008 |
| 1 |
| 2008 |
| 2007 |
| 2008 |
(2)分子为1,分母是两个连续奇数的乘积,第n项为
| 1 |
| n×(2n-1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 49 |
| 1 |
| 51 |
| 1 |
| 2 |
| 1 |
| 51 |
| 25 |
| 51 |
解答:解:(1)
+
+
+…+
=1-
+
-
+
-
+…
-
=1-
=
;
(2)
+
+
+…+
=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2007×2008 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2007 |
| 1 |
| 2008 |
=1-
| 1 |
| 2008 |
=
| 2007 |
| 2008 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 49×51 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 49 |
| 1 |
| 51 |
=
| 1 |
| 2 |
| 1 |
| 51 |
=
| 25 |
| 51 |
点评:解决这类题目找出变化规律,消去中间项,只剩首末两项,使运算变得简单.
练习册系列答案
相关题目