题目内容
如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
A.AF=AE B.△ABE≌△AGF C.EF= D.AF=EF
(1)解不等式组:
(2)计算:
(本题满分8分) 如图,一条公路的转弯处是一段圆弧().
(1)用直尺和圆规作出所在圆的圆心;(要求保留作图痕迹,不写作法)(4分)
(2)若的中点到弦的距离为m,m,求所在圆的半径.(4分)
为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
在ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为 .
如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为( )
A. B.1 C. D.2
如图,在矩形ABCD中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.
若关于x的一元二次方程有实数根,则a的取值范围是( )
A. B. C. D.
某同学想利用影子长度测量操场上旗杆的高度,在某一时刻太阳光下,他测得自己影子的长为0.8m,测得旗杆的影长为5m,已知他的身高为1.6m,则旗杆的高度为________m.