题目内容
分解因式:=
平行四边形的对角线长为、,一边长为12,则、的值可能是( ).
A.8和14 B.10和14 C.18和20 D.10和34
如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=,EF⊥AB,垂足为点F,则EF的长是
(本小题满分12分)
如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形, ,反比例函数(k>0)在第一象限内的图象经过点A,与BC交于点F
(1)若OA=10,求反比例函数解析式;
(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;
(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO 是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由
在平面直角坐标系O中,过原点O及点A(0,2) 、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D 点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动 设移动时间为t秒,当t为 时,△PQB为直角三角形。
如图,将∠AOB放置在5×5的正方形网格中,则sin∠AOB的值是( )
A B C D
(10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
以下四个命题是真命题的是( )
A.任意三点可以确定一个圆
B.菱形对角线相等
C.直角三角形斜边上的中线等于斜边的一半
D.“打开电视机,中央一套正在直播巴西世界杯足球赛”是必然事件
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图
请根据以上信息回答:
(1)本次参加抽样调查的居民有________人;
(2)扇形统计图中:a=________,b=_________,并把条形统计图补充完整;
(3)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.