题目内容

△ABC中,∠C=90°,∠B=15°,DM垂直平分AB,BD=8,则AC等于


  1. A.
    8
  2. B.
    4
  3. C.
    2
  4. D.
    数学公式
B
分析:由DM垂直平分AB,根据线段垂直平分线的性质得到DA=DB=8,再利用等腰三角形的性质可得∠DAB=∠B=15°,则得到∠CDA=2×15°=30°,在Rt△ACD中,根据含30度的直角三角形三边的关系即可求出AC的长.
解答:∵DM垂直平分AB,
∴DA=DB=8,
∴∠DAB=∠B=15°,
∴∠CDA=2×15°=30°,
∵∠C=90°,
∴AC=DA=×8=4.
故选B.
点评:本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了含30度的直角三角形三边的关系以及等腰三角形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网