题目内容
【题目】在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上.
(1)∠A=∠B= ;
(2)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形;
(3)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,求出PE的长.
![]()
【答案】(1)45°;(2)证明见解析;(3)PE的值不变,为5.
【解析】
(1)根据等腰直角三角形的定义可解答;
(2)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;
(3)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.
(1)在等腰直角三角形AOB中,∠AOB=90°
∴∠A=∠B=45°
故答案为:45°;
(2)证明:∵PO=PD,∠OPD=45°,
![]()
∴∠POD=∠PDO=
=67.5°,
由(1)知:∠B=45°,
∴∠OPB=180°﹣∠POB﹣∠B=67.5°,
∴∠POD=∠OPB,
∴BP=BO,即△BOP是等腰三角形;
(2)PE的值不变,证明如下:
如图2,过点O作OC⊥AB于C,
![]()
∵∠AOB=90°,AO=BO,
∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,
∴OC=
AB=5,
∵PO=PD,
∴∠POD=∠PDO,
又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,
∴∠POC=∠DPE,
在△POC和△DPE中,
,
∴△POC≌△DPE(AAS),
∴OC=PE=5,
∴PE的值不变,为5.
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.
![]()