题目内容
在直角△ABC中,∠ACB=90°,若AC=6,BC=8,以C为圆心,R为半径的圆与AB相切,则R的值为 .
考点:切线的性质
专题:
分析:首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=
AC•BC=
AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:如图:连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵在直角△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10,
∵S△ABC=
AC•BC=
AB•CD,
∴AC•BC=AB•CD,
即CD=
=
=
.
故答案为:
.
∵AB是⊙C的切线,
∴CD⊥AB,
∵在直角△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10,
∵S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
∴AC•BC=AB•CD,
即CD=
| AC•BC |
| AB |
| 6×8 |
| 10 |
| 24 |
| 5 |
故答案为:
| 24 |
| 5 |
点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.
练习册系列答案
相关题目
-
的倒数是( )
| 1 |
| 2 |
| A、-2 | ||
| B、2 | ||
C、
| ||
D、
|
| BC |
A、
| ||
B、
| ||
C、
| ||
D、
|