题目内容
下列计算正确的是( )
A. x2+x3=2x5 B. x2 x3=x6 C. (﹣x3)2=﹣x6 D. x6÷x3=x3
若一个长方形的面积为a2bc,长为ac,则它的宽为_______________
在△ABC中,若∠B与∠C互余,则△ABC是( )三角形.
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形
已知3m=4,3n=5,3m﹣n的值为_____.
两直线被第三条直线所截,则( )
A. 内错角相等 B. 同位角相等
C. 同旁内角互补 D. 以上结论都不对
“网络红包”是互联网运营商、商家通过组织互联网线上活动、派发红包的互联网工具,是朋友间互道祝福的表达形式之一.“网络红包”春节活动已经逐渐深入到大众的生活中,得到了人们较为广泛的关注.根据某咨询公司(2018年中国春节“网络红包”专题调查报告》显示:在接受调查的8万名网民中,对“网络红包”春节话动了解程度的占比方面,“较为了解”和“很了解”的网民共占比64%,分别占比36%和28%.在“不了解”和“只了解一两个“的受访网民中,“不了解”的网民人数比“只了解一两个”的网民人数多25%.如图是该咨询公司绘制的“中国网民关于‘网络红包’春节活动了解情况调查”统计图(不完整).
请根据以上信息解答下列问题:
(1)在受访的网民中,“不了解”和“只了解一两个”的网民人数共有 万人,其中“不了解”的网民人数是 万人;
(2)请将扇形统计图补充完整;
(3)2017除夕晚上小聪和爸爸、妈妈一起玩微信抢红包游戏,他们约定由爸爸在家人微信群中先后发两次“拼手气红包”,每次发放的红包数是3个,每个红包抽到的金额随机(每两个红包的金额都不相等),每次谁抽到红包的金额最大谁就是“手气最佳”者,求两次游戏中小聪都能获得“手气最佳”的概率为多少?
某商店进行“迎五一,大促销”摸奖活动,凡是有购物小票的顾客均可摸球一次,摸到的是白球即可获奖.规则如下:一个不透明的袋子中装有10个黑球和若干白球,它们除颜色不同外,其余均相同,从袋子中随机摸出一个球,记下颜色,再把它放回袋子中摇匀,重复此过程.共有300人摸球,其中获奖的共有180人,由此估计袋子中白球大约有_____个.
如图,已知反比例函数的图象经过第二象限内的点A(,4),AB⊥x轴于点B,△AOB的面积为2,若直线经过点A,并且经过反比例函数的图象上另一点C(2,).
(1)求反比例函数和直线的解析式;
(2)设直线与轴交于点M,求AM的长.
某车间20名工人日加工零件数如表所示:
日加工零件数
4
5
6
7
8
人数
2
3
这些工人日加工零件数的众数、中位数、平均数分别是( )
A. 5、6、5 B. 5、5、6 C. 6、5、6 D. 5、6、6