题目内容

22、如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
分析:(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;
(2)由∠BAC=Rt∠,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;
解答:(1)证明:∵DE∥AB,AE∥BC,
∴四边形ABDE是平行四边形,
∴AE∥BD,且AE=BD
又∵AD是BC边上的中线,
∴BD=CD
∴AE∥CD,且AE=CD
∴四边形ADCE是平行四边形
∴AD=CE

(2)证明:∵∠BAC=Rt∠,AD上斜边BC上的中线,
∴AD=BD=CD
又∵四边形ADCE是平行四边形
∴四边形ADCE是菱形
点评:本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=Rt∠,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网