题目内容

已知二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为(  )

A. ﹣1 B. 2 C. ﹣3 D. 5

A 【解析】【解析】 ∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴1﹣a﹣b=﹣1. 故选A.
练习册系列答案
相关题目

如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是( )

A.5 B.7 C.8 D.10

D. 【解析】 试题分析:∵AB=4,BC=6,DE、DF是△ABC的中位线,∴DE=AB=2,DF=BC=3,DE∥BF,DF∥BE,∴四边形BEDF为平行四边形,∴四边形BEDF的周长为:2×2+3×2=10,故选D.

一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.

6 【解析】∵多边形的外角和是360度,多边形的内角和是外角和的2倍, 则内角和是720度, 720÷180+2=6, ∴这个多边形是六边形, 故答案为:6.

某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.

(1)求y与x之间的函数关系式;

(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?

(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?

(1)y=﹣30x+2100.(2)每件售价定为55元时,每星期的销售利润最大,最大利润6750元. (3)每星期至少要销售该款童装360件. 【解析】试题分析:(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论. (2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题. (3)列出不等式先求出售价的范围,再确定销售数量即可解决问题. 试题解...

如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为   

(1+,2)或(1﹣,2). 【解析】【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在中,令y=2,可得,解得x=,∴P点坐标为(,2)或(,2),故答案为:(,2)或(,2).

在下列y关于x的函数中,一定是二次函数的是(  )

A. y=2x2 B. y=2x﹣2 C. y=ax2 D.

A 【解析】解:A.是二次函数,故A符合题意; B.是一次函数,故B错误; C.a=0时,不是二次函数,故C错误; D.a≠0时是分式方程,故D错误; 故选A.

如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m,建立如图所示的直角坐标系,则此抛物线的解析式为___________.

y=-x2 【解析】【解析】 设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10.设点B(10,n),点D(5,n+3),由题意得: ,解得: ,∴. 故答案为: .

袋中有5个红球,6个白球,12个黑球,每个球除颜色外都相同,事先选定一种颜色,若摸到的球的颜色与事先选定的一样,则获胜,否则就失败,为了尽可能获胜,你事先应选择的颜色是__.

黑色 【解析】先分别求出摸到红球,白球,黑球的概率,再比较它们的大小,概率最大的即为所求. 【解析】 ∵袋中有5个红球,6个白球,12个黑球, ∴袋中一共有球:5+6+12=23(个), ∴摸到红球的概率为: , 摸到白球的概率为: , 摸到黑球的概率为: , 又∵<<, ∴摸到黑球的概率最大,会尽可能获胜. 故答案为黑球.

在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4, 3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标是( )

A.(3,4) B.(-4,3) C.(-3,4) D.(4,-3)

C. 【解析】 试题分析:如图,OA=3,PA=4, 把线段OP绕点O逆时针旋转90°到OP′位置可得OA旋转到x轴负半轴OA′的位置,OB旋转到y轴正半轴OB′的位置,所以P′A′=PA=4,P′B′=PB=3,即可得P′点的坐标为(﹣3,4).故答案选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网