题目内容
已知点P(,)在第一象限,则a的取值范围在数轴上表示正确的是
已知抛物线y=ax2+bx+c经过(-1,0),(2,0),(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图①,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;
(3)如图②,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.
一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是
A. B. C. D.
如果一个数的平方等于-1,记作i2=-1,这个数叫做虚数单位.形如a+bi(a,b为有理数)的数叫复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
如:(2+i)+(3-5i)=(2+3)+(1-5)i=5-4i,
(5+i)×(3-4i)=5×3+5×(-4i)+i×3+i×(-4i)=15-20i+3i-4×i2=15-17i-4×(-1)=19-17i.
请根据以上内容的理解,利用以前学习的有关知识将(1+i)(1-i)化简结果为________.
观察下列各式:
(A)502 (B)552 (C)562 (D)602
如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,点E从点C出发沿射线CA以每秒2cm的速度运动,同时点F从点B出发沿射线BC以每秒1cm的速度运动.设运动时间为t秒.
(1)填空:AB= cm;
(2)若0<t <5,试问:t为何值时,以E、C、F为顶点的三角形与△ABC相似;
(3)若∠ACB的平分线CG交△ECF的外接圆于点G.试探究在整个运动过程中,CE、CF、CG之间存在的数量关系,并说明理由.
小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下其中的两个开关,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表加以说明.
如图所示几何体的俯视图是( )
如下图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,……则第n个图形中平行四边形的个数是 .