题目内容

直角梯形ABCD中,AB∥CD,∠C=90°,AB=BC,M为BC边上一点.
(1)若∠DMC=45°,求证:AD=AM.
(2)若∠DAM=45°,AB=7,CD=4,求BM的值.

(1)证明:作AF⊥CD交延长线于点F.
∵∠DMC=45°,∠C=90°
∴CM=CD,
又∵∠B=∠C=∠AFD=90°,AB=BC,
∴四边形ABCF为正方形,
∴BC=CF,
∴BM=DF,
在Rt△ABM和Rt△AFD中,

∴△ABM≌△AFD(SAS),
∴AD=AM.

(2)解:把Rt△ABM绕点A顺时针旋转90°,使AB与AF重合,得Rt△AFN.
∵∠DAM=45°,
∴∠BAM+∠DAF=45°,
由旋转知∠BAM=∠NAF,
∴∠DAF+∠NAF=45°,
即∠DAM=∠DAN,
由旋转知AM=AN,
∴△ADM≌△ADN,
∴DM=DN,
设BM=x,
∵AB=BC=CF=7,
∴CM=7-x
又∵CD=4,
∴DF=3,BM=FN=x,
∴MD=DN=3+x,
在Rt△CDM中,(7-x)2+42=(3+x)2
解得:x=
∴BM的值为
答:BM的值为
分析:(1)作AF⊥CD交延长线于点F,根据∠DMC=45°,∠C=90°,得到∠B=∠C=∠AFD=90°,AB=BC,推出正方形ABCF,根据正方形的性质得到BC=CF,进一步证出△ABM≌△AFD,即可得到答案;
(2)把Rt△ABM绕点A顺时针旋转90°,使AB与AF重合,得Rt△AFN,由已知∠DAM=45°和旋转,推出∠DAM=∠DAN,得到△ADM≌△ADN,设BM=x,得到CM=7-x,BM=FN=x,MD=DN=3+x,在Rt△CDM中,根据勾股定理即可求出答案.
点评:本题主要考查对直角梯形,全等三角形的性质和判定,正方形的性质和判定,勾股定理,垂线,旋转的性质,解一元二次方程等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网