题目内容
由于连日暴雨导致某路段积水,有一辆卡车驶入该积水路段.如图所示,已知这辆卡车的车轮外直径(包含轮胎厚度)为120cm,车轮入水部分的弧长约为其周长的
【答案】分析:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,根据弧CD等于⊙O周长的
,故可得出n的值,再根据OE⊥CD 且OE=OC=OD=
AB可得出OE的长,故OF是∠COD的平分线,所以∠FOD=
∠COD=
n,再根据∠FOD+∠ODF=90°,可得出∠ODF的度数,在Rt△OFD中由直角三角形的性质可得出OF的长,再根据FE=OE-OF即可得出结论.
解答:
解:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,
∵弧CD等于⊙O周长的
,即
=
πd,
∴n=120°,
∵OE⊥CD 且OE=OC=OD=
AB=60cm,
∴OF是∠COD的平分线,
∴∠FOD=
∠COD=
n=60°,
∵∠FOD+∠ODF=90°,
∴∠ODF=30°
∴在Rt△OFD中,OF=
OD=30cm,
∴FE=OE-OF=30cm,
∴积水深度30cm.
点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.
解答:
∵弧CD等于⊙O周长的
∴n=120°,
∵OE⊥CD 且OE=OC=OD=
∴OF是∠COD的平分线,
∴∠FOD=
∵∠FOD+∠ODF=90°,
∴∠ODF=30°
∴在Rt△OFD中,OF=
∴FE=OE-OF=30cm,
∴积水深度30cm.
点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.
练习册系列答案
相关题目
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=-
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)
| 周数x | 1 | 2 | 3 | 4 |
| 价格y(元/kg) | 2 | 2.2 | 2.4 | 2.6 |
| 1 |
| 20 |
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
| 1 |
| 4 |
| 1 |
| 5 |
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)