题目内容
正方形具有而菱形不一定具有的特征有( )
A.对角线互相垂直平分 B.内角和为360°
C.对角线相等 D.对角线平分内角
先化简,再求值:,其中x =3.
下列各式运算正确的是( )
A. B.
C. D.
已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为( )
A.8 B.6 C.4 D.3
如图,在正方形ABCD中,CE=MN,∠BCE=40°,则∠ANM等于( )
A.70° B.60° C.50° D.40°
(10分)我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.
(1)试说明直线AE是“好线”的理由;
(2)如下图,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).
如图,将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是 °
(本题满分8分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P( ,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.
在实数范围内因式分【解析】2-4= .