题目内容
如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A. 1 B. C. 4-2 D. 3-4
下列计算正确的是( )
A. a+a2=a3 B. (a3)2=a5 C. a•a2=a3 D. a6÷a2=a3
如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )
A. 2 B. 2 C. 4 D. 4
【答案】B
【解析】试题解析:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.
∵已知菱形ABCD的周长为16,面积为8,
∴AB=BC=4,AB•CE′=8,
∴CE′=2,
在Rt△BCE′中,BE′=,
∵BE=EA=2,
∴E与E′重合,
∵四边形ABCD是菱形,
∴BD垂直平分AC,
∴A、C关于BD对称,
∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,
故选:B.
【题型】单选题【结束】11
9的平方根是_____.
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF ;
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.
在□ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为____.
如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( )
A. 4 B. 3 C. D. 2
已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;
(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.
如果a﹣b=5,那么代数式(﹣2)•的值是( )
A. ﹣ B. C. ﹣5 D. 5
如图,在△ABC中,AB=AC,点,在边上,.求证:.