题目内容

如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).

(1)求抛物线l的解析式(用含m的式子表示);

(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;

(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.

考点:

二次函数综合题.

分析

(1)设抛物线l的解析式为y=ax2+bx+c,将A、D、M三点的坐标代入,运用待定系数法即可求解;

(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.根据轴对称及平行线的性质得出DM=OM=x,则A′M=2m﹣x,OA′=m,在Rt△OA′M中运用勾股定理求出x,得出A′点坐标,运用待定系数法得到直线OA′的解析式,确定E点坐标(4m,﹣3m),根据抛物线l与线段CE相交,列出关于m的不等式组,求出解集即可;

(3)根据二次函数的性质,结合(2)中求出的实数m的取值范围,即可求解.

解答:

解:(1)设抛物线l的解析式为y=ax2+bx+c,

将A(0,m),D(2m,m),M(﹣1,﹣1﹣m)三点的坐标代入,

,解得

所以抛物线l的解析式为y=﹣x2+2mx+m;

(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.

∵把△OAD沿直线OD折叠后点A落在点A′处,

∴△OAD≌△OA′D,OA=OA′=m,AD=A′D=2m,∠OAD=∠OA′D=90°,∠ADO=∠A′DO,

∵矩形OABC中,AD∥OC,

∴∠ADO=∠DOM,

∴∠A′DO=∠DOM,

∴DM=OM.

设DM=OM=x,则A′M=2m﹣x,

在Rt△OA′M中,∵OA′2+A′M2=OM2

∴m2+(2m﹣x)2=x2

解得x=m.

∵S△OA′M=OM•A′N=OA′•A′M,

∴A′N==m,

∴ON==m,

∴A′点坐标为(m,﹣m),

易求直线OA′的解析式为y=﹣x,

当x=4m时,y=﹣×4m=﹣3m,

∴E点坐标为(4m,﹣3m).

当x=4m时,﹣x2+2mx+m=﹣(4m)2+2m•4m+m=﹣8m2+m,

即抛物线l与直线CE的交点为(4m,﹣8m2+m),

∵抛物线l与线段CE相交,

∴﹣3m≤﹣8m2+m≤0,

∵m>0,

∴﹣3≤﹣8m+1≤0,

解得≤m≤

(3)∵y=﹣x2+2mx+m=﹣(x﹣m)2+m2+m,≤m≤

∴当x=m时,y有最大值m2+m,

又∵m2+m=(m+2

∴当≤m≤时,m2+m随m的增大而增大,

∴当m=时,顶点P到达最高位置,m2+m=(2+=

故此时抛物线l顶点P到达最高位置时的坐标为().

点评:

本题是二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,轴对称的性质,勾股定理,两个函数交点坐标的求法,二次函数、矩形的性质,解不等式组等知识,综合性较强,有一定难度.(2)中求出A′点的坐标是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网