题目内容

如图,AB=AC,AB的垂直平分线交AB于D,交AC于E,BE恰好平分∠ABC,有以下结论:
(1)ED=EC;(2)△ABC的周长等于2AE+EC;(3)图中共有3个等腰三角形;(4)∠A=36°,
其中正确的共有(  )
A、4个B、3个C、2个D、1个
考点:线段垂直平分线的性质,等腰三角形的判定与性质
专题:
分析:(1)由角平分线的性质可判定ED≠EC;(2)由垂直平分线的性质可知AE=EB,则有AE+EB+AB=AE+AE+AE+EC=3AE+EC,可判断出(2);(3)可判定△ABE、△ABC、△BEC为等腰三角形;(4)由(3)可求得∠A;可得出答案.
解答:解:(1)由题意可知DE⊥AB,BE平分∠ABC,
∴当EC⊥BC时,有ED=EC,
∵AB=AC,
∴∠ACB不可能等于90°,
∴ED=EC不正确;
(2)∵E在线段AB的垂直平分线上,
∴EA=EB,
∴EA+EB+AB=EA+EA+AB=2EA+AB,
∵AB=AC,且AC=AE+EC,
∴EA+EB+AB=3AE+EC,
∴(2)不正确;
(3)∵AB=AC,
∴△ABC为等腰三角形,∠C=∠ABC,
∵EA=EB,
∴△EAB为等腰三角形,∠A=∠ABE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠C=2∠CBE,
又∠BEC=∠A+∠ABE=2∠CBE,
∴∠BEC=∠C,
∴BE=BC,
∴△BEC为等腰三角形,
∴图中共有3个等腰三角形,
∴(3)正确;
(4)由(3)可得∠BEC=∠C=2∠EBC,
∴2∠EBC+2∠EBC+∠EBC=180°,
∴∠EBC=36°,
∴∠A=∠ABE=∠EBC=36°,
∴(4)正确;
∴正确的有(3)(4)共两个,
故选C.
点评:本题主要考查线段垂直平分线的性质和等腰三角形的判定和性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键,注意三角形内角和定理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网