题目内容

三角形纸片ABC中,∠C=90°,AC=1,BC=2.按图①的方式在这张纸片中剪去一个尽可能大的正方形,称为第1次剪取,记余下的两个三角形面积和为S1;按图②的方式在余下的Rt△ADF和Rt△BDE中,分别剪去尽可能大的正方形,称为第2次剪取,记余下的两个三角形面积和为S2;继续操作下去…….

(1)如图①,求和S1的值;

(2)第n次剪取后,余下的所有三角形面积之和Sn为________.

(1), ;(2) . 【解析】【试题分析】(1)设CE的长为x,由题意得,AF=1-x,FD=x,由于DF∥BC,根据平行线分线段成比例定理的推论得,?ADF∽?ABC,根据相似三角形的对应边成比例,得 = ,即 ,解方程得x= ,则 ,则S1=×1×2-= (2)第一个图形中,S1=,即S1是 的;第二个图形中,S2是 和的\和的,即S2= ,…则Sn= 【试题解析】 ...
练习册系列答案
相关题目

如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.

(1)求证:△BDE∽△CFD;

(2)当BD=1,CF=3时,求BE的长.

【答案】(1)证明见解析;(2)

【解析】试题分析:

(1)由题意可得,∠B=∠C=60°,∠BDE+∠CDF=120°,∠BDE+∠BED=120°,由此可得:∠CDF=∠BED,从而可得:△BDE∽△CFD;

(2)由△BDE∽△CFD可得: ,由已知易得:CD=BC-BD=5-1=4,由此可得: ,解得BE=.

试题解析:

(1)∵△ABC是等边三角形,

∴∠B=∠C=60°,

∴∠BDE+∠BED=120°.

∵∠EDF=60°,

∴∠BDE+∠CDF=120°,

∴∠CDF=∠BED,

∴△BDE∽△CFD;

(2)∵等边△ABC的边长为5,BD=1,

∴CD=BC-BD=4.

∵△BDE∽△CFD,

,即

∴BE=.

点睛:本题解题的关键是:由∠EDF=∠B=60°,得到∠BDE+∠BED=120°和∠BDE+∠CDF=120°,从而得到∠BED=∠CDF.

【题型】解答题
【结束】
25

如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

(1)求证:△ABM ∽△EFA;

(2)若AB=12,BM=5,求DE的长.

(1)证明见解析;(2)4.9. 【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论; (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长. 试题解析:(1)∵四边形ABCD是正方形, ∴AB=AD,∠B=90°,AD∥BC, ∴∠AMB=...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网