题目内容
考点:翻折变换(折叠问题),矩形的性质
专题:计算题
分析:先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC-BF=4,设CE=x,则DE=EF=8-x,然后在Rt△ECF中根据勾股定理得到x2+42=(8-x)2,再解方程即可得到CE的长.
解答:解:∵四边形ABCD为矩形,
∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,∵BF=
=6,
∴CF=BC-BF=10-6=4,
设CE=x,则DE=EF=8-x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+42=(8-x)2,解得x=3,
即CE=3.
∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,∵BF=
| AF2-AB2 |
∴CF=BC-BF=10-6=4,
设CE=x,则DE=EF=8-x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+42=(8-x)2,解得x=3,
即CE=3.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.
练习册系列答案
相关题目
下列运算中,正确的是( )
| A、a12÷a4=a3 |
| B、a2•a3=a5 |
| C、(a5)2=a7 |
| D、2a+3b=5ab |