题目内容
| m |
| x |
(1)当m=1时,k1=
-
| 1 |
| 2 |
-
;| 1 |
| 2 |
(2)当m=1时,k1+k2+k3=
-
| 3 |
| 4 |
-
;| 3 |
| 4 |
(3)①当m=2时,求k1+k2+k3+…+k20的值,并写出求解过程.
②用m、n表示k1+k2+k3+…+kn的值(直接写出结果).
分析:(1)由反比例函数的解析式y=
可确定点A1的坐标为(1,1),点A2的坐标为(2,
),再把它们代入y=k1x+b1得到k1+b1=1①,2k1x+b1=
②,然后用②-①可求得k1=
-1=-
;
(2)当m=1时,反比例函数的解析式为y=
,可确定点A1的坐标为(1,1),点A2的坐标为(2,
),点A3的坐标为(3,
),点A4的坐标为(4,
),与(1)一样得到k2=
-
,k3=
-
,易得到k1+k2+k3的值;
(3)①当m=2时,反比例函数的解析式为y=
,先确定点A1坐标为(1,2),点A2坐标为(2,
),点A3的坐标为(3,
),点A4的坐标为(4,
),…,点A20坐标为(20,
),点A21坐标为(21,
),仿照(1)得到k1=
-
,k2=
-
,k3=
-
,…,k20=
-
,则k1+k2+k3+…+k20=
-
+
-
+
-
+…+
-
,然后进行加减运算即可;
②先得到点A1坐标为(1,m),点A2坐标为(2,
),点A3的坐标为(3,
),点A4的坐标为(4,
),…,点An坐标为(n,
),点An+1坐标为(n+1,
),再同样可得到k1=
-m,k2=
-
,k3=
-
,…,kn=
-
,则k1+k2+k3+…+kn=
-m+
-
+
-
+…+
-
,然后进行分式的加减运算即可.
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)当m=1时,反比例函数的解析式为y=
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
(3)①当m=2时,反比例函数的解析式为y=
| 2 |
| x |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| 4 |
| 2 |
| 20 |
| 2 |
| 21 |
| 2 |
| 2 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| 3 |
| 2 |
| 21 |
| 2 |
| 20 |
| 2 |
| 2 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| 3 |
| 2 |
| 21 |
| 2 |
| 20 |
②先得到点A1坐标为(1,m),点A2坐标为(2,
| m |
| 2 |
| m |
| 3 |
| m |
| 4 |
| m |
| n |
| m |
| n+1 |
| m |
| 2 |
| m |
| 3 |
| m |
| 2 |
| m |
| 4 |
| m |
| 3 |
| m |
| n+1 |
| m |
| n |
| m |
| 2 |
| m |
| 3 |
| m |
| 2 |
| m |
| 4 |
| m |
| 3 |
| m |
| n+1 |
| m |
| n |
解答:解:(1)当m=1时,反比例函数的解析式为y=
,
∴点A1的坐标为(1,1),点A2的坐标为(2,
),
把点A1(1,1),点A2(2,
)代入y=k1x+b1得
k1+b1=1①,
2k1x+b1=
②
∴②-①得k1=
-1=-
;
故答案为-
;
(2)当m=1时,反比例函数的解析式为y=
,
点A1的坐标为(1,1),点A2的坐标为(2,
),点A3的坐标为(3,
),点A4的坐标为(4,
),
与(1)一样,k2=
-
,k3=
-
,
∴k1+k2+k3=
-1+
-
+
-
=-1+
=-
;
故答案为-
;
(3)①当m=2时,反比例函数的解析式为y=
,
∴点A1坐标为(1,2),点A2坐标为(2,
),点A3的坐标为(3,
),点A4的坐标为(4,
),…,点A20坐标为(20,
),点A21坐标为(21,
),
与(1)一样,k1=
-
,k2=
-
,k3=
-
,…,k20=
-
,
∴k1+k2+k3+…+k20=
-
+
-
+
-
+…+
-
=-2+
=-
;
②点A1坐标为(1,m),点A2坐标为(2,
),点A3的坐标为(3,
),点A4的坐标为(4,
),…,点An坐标为(n,
),点An+1坐标为(n+1,
).
与(1)一样,k1=
-m,k2=
-
,k3=
-
,…,kn=
-
,
∴k1+k2+k3+…+kn=
-m+
-
+
-
+…+
-
=-m+
=-
.
| 1 |
| x |
∴点A1的坐标为(1,1),点A2的坐标为(2,
| 1 |
| 2 |
把点A1(1,1),点A2(2,
| 1 |
| 2 |
k1+b1=1①,
2k1x+b1=
| 1 |
| 2 |
∴②-①得k1=
| 1 |
| 2 |
| 1 |
| 2 |
故答案为-
| 1 |
| 2 |
(2)当m=1时,反比例函数的解析式为y=
| 1 |
| x |
点A1的坐标为(1,1),点A2的坐标为(2,
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
与(1)一样,k2=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
∴k1+k2+k3=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 3 |
| 4 |
故答案为-
| 3 |
| 4 |
(3)①当m=2时,反比例函数的解析式为y=
| 2 |
| x |
∴点A1坐标为(1,2),点A2坐标为(2,
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| 4 |
| 2 |
| 20 |
| 2 |
| 21 |
与(1)一样,k1=
| 2 |
| 2 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| 3 |
| 2 |
| 21 |
| 2 |
| 20 |
∴k1+k2+k3+…+k20=
| 2 |
| 2 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| 3 |
| 2 |
| 21 |
| 2 |
| 20 |
| 2 |
| 21 |
| 40 |
| 21 |
②点A1坐标为(1,m),点A2坐标为(2,
| m |
| 2 |
| m |
| 3 |
| m |
| 4 |
| m |
| n |
| m |
| n+1 |
与(1)一样,k1=
| m |
| 2 |
| m |
| 3 |
| m |
| 2 |
| m |
| 4 |
| m |
| 3 |
| m |
| n+1 |
| m |
| n |
∴k1+k2+k3+…+kn=
| m |
| 2 |
| m |
| 3 |
| m |
| 2 |
| m |
| 4 |
| m |
| 3 |
| m |
| n+1 |
| m |
| n |
| m |
| n+1 |
| mn |
| n+1 |
点评:本题考查了反比例函数综合题:点在反比例函数图象上,则点的坐标满足其解析式;运用待定系数法求函数的解析式;熟练掌握分数与分式的运算.
练习册系列答案
相关题目