题目内容

如图1,一扇窗户打开后用窗钩AB可将其固定.
(1)这里所运用的几何原理是( )
(A)三角形的稳定性(B)两点之间线段最短;
(C)两点确定一条直线(D)垂线段最短;
(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)

【答案】分析:(1)加上窗钩AB后,原图形中具有△AOB了,故这种做法根据的是三角形的稳定性;
(2)点到直线的距离是指点到直线的垂线段的长度,解直角三角形求解即可.
解答:解:(1)A.

(2)如图,
过点B作BC⊥OA于点C.
∵∠AOB=45°,
∴∠CBO=45°,BC=OC.
设BC=OC=x,
∵∠OAB=30°,
∴AC=BC×tan60°=x.
∵OC+CA=OA,
∴x+x=60,
∴x===30-30≈22(cm).
即点B到OA边的距离是22cm.
点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网