题目内容
如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.
1.写出图中∠BOD与∠AOE的补角;
2.如果∠COD=25°,那么∠COE=_______;如果∠COD=60°,那么∠COE=________;
3.试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.
1.∠BOD的补角为∠AOD,∠DOC ;
∠AOE的补角为∠BOE,∠EOC. ·························4分
2.65°;30°. ·······························6分
3.∠COD+∠COE=90°. ······································7分
因为OD平分∠AOC,OE平分∠BOC.
所以 ∠COD=
∠AOC , ∠COE=
∠BOC.
所以∠COD+∠COE=
∠AOB=![]()
180°=90°. ··················10分
解析:略
练习册系列答案
相关题目