题目内容

如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.

1.写出图中∠BOD与∠AOE的补角;

2.如果∠COD=25°,那么∠COE=_______;如果∠COD=60°,那么∠COE=________;

3.试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.

 

 

1.∠BOD的补角为∠AOD,∠DOC ;

∠AOE的补角为∠BOE,∠EOC.       ·························4分

2.65°;30°.              ·······························6分

3.∠COD+∠COE=90°.  ······································7分

因为OD平分∠AOC,OE平分∠BOC.

所以 ∠COD=∠AOC , ∠COE=∠BOC.

所以∠COD+∠COE=∠AOB=180°=90°. ··················10分

 解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网