题目内容
如图,,,,且,,则________.
一元二次方程x(x+2)=0的解是_____.
如图,AB为⊙O的直径,点C,D在⊙O上,且BC=6 cm,AC=8 cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
A. cm B. cm C. cm D. 30cm
将直角边长为的等腰直角放在平面直角坐标系中,点为坐标原点,点、分别在轴,轴的正半轴上,一条抛物线经过点、及点.
求该抛物线的解析式;
若点是线段上一动点,过点作的平行线交于点,连接,当的面积最大时,求点的坐标;
若点在抛物线上,则称点为抛物线的不动点,将中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线上,求此时抛物线的解析式.
选择-1,A,2,4这四个数构成比例式,则A等于________或________.(只要求写出两个值)
抛物线(是常数)的顶点在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
某公交车上原坐有 22 人,经过 4 个站点时上下车情况如下(上车为正,下车为负)(+4,-8),(-5,6),(-3,6),(+1,-7),则车上还有________人.
如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C作⊙O的切线交DE的延长线于点H.
(1)求证:HC=HF;
(2)若⊙O的半径为5,点F是BC的中点,tan∠HCF=m,写出求线段BC长的思路.