题目内容
【题目】已知:△ABC中,CA=CB, ∠ACB=90,D为△ABC外一点,且满足∠ADB=90
(1)如图所示,求证:DA+DB=
DC
![]()
(2)如图所示,猜想DA.DB.DC之间有何数量关系?并证明你的结论.
![]()
(3)如图所示,过C作CH⊥BD于H,BD=6,AD=3,则CH= .
![]()
【答案】(1)详见解析;(2)DA-DB=
DC;(3)![]()
【解析】
(1)过C点作CQ⊥CD交DB的延长线于Q点,由余角的性质可得∠ACD=∠QCB,∠ADC=∠Q,由“AAS”可证△ACD≌△BCQ,可得CD=CQ,AD=BQ,由等腰直角三角形性质可得DQ=
CD,即可得结论;
(2)过点C作CQ⊥CD交AD于点Q,由“SAS”可证△ACQ≌△BCD,可得AQ=BD,可证CQ=CD,且∠QCD=90°,即可得DA、DB、DC之间关系;
(3)过点C作CQ⊥CD交BD于点Q,由“SAS”可证△ACD≌△BCQ,可得AD=BQ,可证△DCQ是等腰直角三角形,由等腰直角三角形的性质可求CH的长.
证明:(1)如图,过C点作CQ⊥CD交DB的延长线于Q点
![]()
∵∠ACB=90°,CQ⊥CD,∠ADB=90°
∴∠ACD+∠DCB=90°,∠DCB+∠QCB=90°,∠ADC+∠CDQ=90°,∠CDQ+∠Q=90°
∴∠ACD=∠QCB,∠ADC=∠Q,且AC=BC
∴△ACD≌△BCQ(AAS)
∴CD=CQ,AD=BQ
∴DQ=DB+BQ=DB+AD
∵CD⊥CQ,∠DCQ=90°
∴DQ=
CD
∴DB+AD=
CD
(2)DA-DB=
CD
理由如下:如图,过点C作CQ⊥CD交AD于点Q,
![]()
∵CA=CB,∠ACB=90°,
∴∠ABC=∠CAB=45°
∵∠ACB=90°,QC⊥CD
∴∠ACB=∠ADB=90°,
∴点A,点B,点D,点C四点共圆,
∴∠ADC=∠ABC=45°
∵QC⊥CD
∴∠CQD=∠CDQ=45°
∴CQ=CD,且∠QCD=90°
∴QD==
CD
∵∠ACB=∠DCQ=90°,
∴∠ACQ=∠DCB,且AC=BC,CQ=CD
∴△ACQ≌△BCD(SAS)
∴AQ=BD
∴QD=
CD=DA-AQ=DA-BD,
即:DA-DB=![]()
(3)如图,过点C作CQ⊥CD交BD于点Q,
![]()
∵∠ACB=90°,QC⊥CD
∴∠ACB=∠ADB=90°,
∴点A,点B,点C,点D四点共圆,
∴∠CDQ=∠CAB=45°
∵QC⊥CD
∴∠CQD=∠CDQ=45°
∴CQ=CD,且∠QCD=90°
∴△DCQ是等腰直角三角形,
∵∠ACB=∠DCQ=90°,
∴∠ACD=∠QCB,且AC=BC,CQ=CD
∴△ACD≌△BCQ(SAS)
∴AD=BQ,
∴DQ=DB-BQ=DB-AD=3
∵△DCQ是等腰直角三角形,DQ=3,CH⊥DB
∴CH=DH=HQ=
DQ=
.
故答案为:
.
【题目】在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为 ;
(3)试估算盒子里黑、白两种颜色的球各有多少只?