题目内容
如图,在△ABC中,DE∥BC,若,DE=4,则BC= .
如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为( )
A. B. C.8 D.10
一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有______个.
已知关于x的一元二次方程的两个实数根分别为,.
(1)求证:该一元二次方程总有两个实数根;
(2)若,判断动点P(m,n)所形成的函数图象是否经过点A(4,5),并说明理由.
如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tan∠ADN= .
方程的左边配成一个完全平方式后,所得的方程为( )
A. B.
C. D.
(本小题12分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.
(1)若b=5,则点A坐标是 ;
(2)在(1)的条件下,若OQ=8,求线段BQ的长;
(3)若点P在函数y=x2(x>0)的图象上,△BQP是等腰三角形且PQ=
求出点B的坐标.
如图,⊙O中,OA⊥BC,∠AOB=52°,则∠ADC的度数为 .
如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.
(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的最大值.