题目内容
【题目】如图,△ABC 中,点 D,E 分别在∠ABC 和∠ACB 的平分线上,连接 BD,DE,EC,若∠D+∠E=295°, 则∠A 是( )
![]()
A.65°B.60°C.55°D.50°
【答案】D
【解析】
利用四边形BDEC的内角和为360°,即可求出∠DBC+∠ECB的度数,由BD、CE分别平分∠ABC、∠ACB可得∠ABC=2∠DBC, ∠ACB=2∠ECB,可求∠ABC+∠ACB
的度数,即可得∠A的度数.
解:在四边形BDEC中,∠DBC+∠EBC+∠D+∠E=360°
∵∠D+∠E=295°
∴∠DBC+∠ECB =360°-295°=65°
∵BD、CE分别平分∠ABC、∠ACB
∴∠ABC=2∠DBC, ∠ACB=2∠ECB
∴∠ABC+∠ACB=2∠DBC+2∠ECB=2(∠DBC+∠ECB)=130°
∴∠A=50°
故选:D
练习册系列答案
相关题目
【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.