题目内容
已知一次函数y=mx+n与反比例函数y=
的图象相交于点( 1,2 ),求该直线与双曲线的另一个交点坐标________.
(-2,-1)
分析:由一次函数y=mx+n与反比例函数y=
的图象相交于点( 1,2).联立列方程组,求得m、n的值,再求另一个交点坐标.
解答:∵直线y=mx+n与双曲线y=
相交于( 1,2),
∴
.
解得
.
∴直线为y=x+1.
双曲线为y=
.
解方程组
,
解得
,
.
∴另一个交点为(-2,-1).
故答案为:(-2,-1).
点评:本题综合考查反比例函数与方程组的相关知识点.先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.
分析:由一次函数y=mx+n与反比例函数y=
解答:∵直线y=mx+n与双曲线y=
∴
解得
∴直线为y=x+1.
双曲线为y=
解方程组
解得
∴另一个交点为(-2,-1).
故答案为:(-2,-1).
点评:本题综合考查反比例函数与方程组的相关知识点.先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.
练习册系列答案
相关题目