题目内容

如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.

(1)求这个二次函数的表达式.

(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时点P的坐标和四边形面积的最大值。

(1)y=-;(2)(,32);(3)P点的坐标为(, ),四边形ABPC面积的最大值为. 【解析】试题分析:(1)根据待定系数法,可得函数解析式; (2)根据菱形的对角线互相平分,可得P点的纵坐标,根据函数值与自变量的对应关系,可得答案; (3)根据面积的和差,可得二次函数,根据二次函数的性质,可得m的值,根据自变量与函数值的对应关系,可得P点坐标. 试题解析:(1)将B...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网