题目内容


如图,正方形ABCD的边CD与正方形CGEF的边CE重合,O是EG的中点,∠EGC的评分项GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:

①GH⊥BE;②HOBG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.

其中正确的结论有(  )

 

A.

1个

B.

2个

C.

3个

D.

4个


C

解:(1)如图,∵四边形ABCD和四边形CGFE是正方形,

∴BC=CD,CE=CG,∠BCE=∠DCG,

在△BCE和△DCG中,

∴△BCE≌△DCG(SAS),

∴∠BEC=∠BGH,

∵∠BGH+∠CDG=90°,∠CDG=∠HDE,

∴∠BEC+∠HDE=90°,

∴GH⊥BE.

故①正确,

(2)∵GH是∠EGC的平分线,

∴∠BGH=∠EGH,

在△BGH和△EGH中

∴△BGH≌△EGH(ASA),

∴BH=EH,

∵O是EG的中点,

==

∴HO=BG,

故②正确.

(3)由(1)得△EHG是直角三角形,

∵O为FG的中点,

∴OH=OG=OE,

∴点H在正方形CGFE的外接圆上,

故③错误,

(4)如图2,连接CF,

由(3)可得点H在正方形CGFE的外接圆上,

∴∠HFC=∠CGH,

∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,

∴∠FMG=∠GBE,

又∵∠EGB=∠FGM=45°,

∴△GBE∽△GMF.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网