题目内容
如图,请作出圆柱在投影面P上的正投影.
如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角仪.
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示);
(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测角仪高度忽略不计).
(2014湖北十堰)在下面四个几何体中,左视图与主视图不相同的是( )
A.B.C.D.
图①②是晓东同学在进行“居民楼高度、楼间距对住户采光影响问题”的研究时画的两个示意图.请你阅读相关文字,解答下面的问题.
(1)图①是太阳光线与地面所成角度的示意图.冬至的正午时刻,太阳光线直射在南回归线(南纬23.5°)B地上,在地处北纬36.5°的A地,太阳光线与地面水平线l所成的角为α,试借助图①求α的度数.
(2)图②是乙楼高度、楼间距对甲楼采光影响的示意图.甲楼地处A地,其二层住户南面窗户的下端距地面3.4m,现要在甲楼正南面建一幢高度为22.3m的乙楼,为不影响甲楼二层住户(一层为车库)的采光,两楼之间的距离至少应为多少米?(精确到1m)
正三棱柱的正投影可能是( )
①三角形;②圆;③矩形;④线段.
A.①③
B.①③④
C.③④
D.①②③④
(2014四川广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB的长为米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).
(1)若修建的斜坡BE的坡比为,求休闲平台DE的长.
(2)一座建筑物距离A点33米远(即AG=33米),小亮在D点处测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG.问:建筑物的高GH为多少米?
(2014江西南昌)图①中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图②.在图②中,每个菱形的边长为10cm,锐角为60°.
(1)连接CD,EB,猜想它们的位置关系并加以证明;
(2)求A,B两点之间的距离(结果取整数,可以使用计算器).
(参考数据:,,)
(2014江苏镇江)如图,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,,然后又沿着坡度为i=1︰4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?
已知:如图,点B,F,C,E在同一条直线上,BF=CE,AC=DF,且AC∥DF.
求证:∠B=∠E.