题目内容
7和3
7和3
.分析:过点B作AD的垂线,垂足为H,延长交AC与G,连接DG,则AD为BG的垂直平分线,由此得到 HG∥CE,AG=AB=AD,HG=BH,HB∥CE,接着利用平行线分线段成比例即可得到AG:AC=AH:AE=HG:EC=BH:CE=HD:DE,最后利用这些比例线段即可求解.
解答:解:过点B作AD的垂线,垂足为H,延长交AC与G,连接DG,
则AD为BG的垂直平分线,
∴HG∥CE,AG=AB=AD,HG=BH,HB∥CE,
∴AG:AC=AH:AE=HG:EC=BH:CE=HD:DE,
∴AG:AC=AH:AE=HD:DE=(AH+HD):(AE+DE)=AD:(AE+DE)
而AD=AG,
则AC=(AE+DE),
AC=4+AB,AE=5,DE=AE-AD=AE-AB=5-AB,
∴4+AB=5+5-AB
∴AB=3,
∴AC=3+4=7.
故答案为:7和3.
则AD为BG的垂直平分线,
∴HG∥CE,AG=AB=AD,HG=BH,HB∥CE,
∴AG:AC=AH:AE=HG:EC=BH:CE=HD:DE,
∴AG:AC=AH:AE=HD:DE=(AH+HD):(AE+DE)=AD:(AE+DE)
而AD=AG,
则AC=(AE+DE),
AC=4+AB,AE=5,DE=AE-AD=AE-AB=5-AB,
∴4+AB=5+5-AB
∴AB=3,
∴AC=3+4=7.
故答案为:7和3.
点评:此题主要考查了相似三角形的性质,解题的关键作辅助线,通过辅助线构造三角形相似,最后利用实习生减性的性质解决问题.
练习册系列答案
相关题目