题目内容
分解因式:mn2-2mn+m=_________.
如图,在菱形ABCD中,AC=8,菱形ABCD的面积为24,则其周长为( )
A. 20 B. 24 C. 28 D. 40
若|a﹣1|=2,则a=_____.
已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求之值(用含m的代数式表示);
(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.
先化简,再求代数式的值,其中
将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度,所得的抛物线解析式为( )
A. B.
C. D.
已知是一段圆弧上的两点,且在直线的同侧,分别过这两点作的垂线,垂足为
是上一动点,连接,且.
(1)如图①,如果,且,求的长;
(2)如图②,若点恰为这段圆弧的圆心,则线段之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当分别在直线两侧且,而其余条件
不变时,线段之间又有怎样的等量关系?请直接写出结论,不必证明.
我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结,,,…得到螺旋折线(如图),已知点(0,1),(,0),(0,),则该折线上的点的坐标为( )
A. (,24) B. (,25) C. (,24) D. (,25)
如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于的长为半径画弧,两弧交于P,Q两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.