题目内容
;
原式== -=-;
如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0)和点B(1,0),直线与y轴交于点C,与抛物线交于点C,D.
(1)求抛物线的解析式;
(2)求点A到直线CD的距离;
(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G,P,Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.
如图,∠C=∠CAM= 90°,AC=8,BC=4, P、Q两点分别在线段AC和射线AM上运动,且PQ=AB.当AP= 时,ΔABC与ΔPQA全等.
如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为 ( )
A.10° B.15° C.18° D.20°
如果+=0,则+= .
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0) .(1)请直接写出与点B关于坐标原点O的对称点 B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的
△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是( )
A. ﹣3 B. 3 C. 0 D. 0或3
解方程:x2+3x+1=0.(公式法)
若,则的取值范围是 ( )
A、 B、 C、 D、