题目内容
如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.
(1)当P移动到什么位置时,BP=AB.
(2)求∠C的取值范围.
![]()
解:(1)∵BD⊥BC,
∴△DBC是直角三角形,
当P移动到DC的中点时,DP=PC=BP,
∴∠C=∠PBC,∠APB=∠C+∠PBC=2∠C,
又∵∠A=2∠C,
∴∠A=∠APB,
∴△ABP是等腰三角形,
∴BP=AB;
(2)根据三角形的外角性质,在△ABD中,∠BDC>∠A,
∵∠BDC+∠C=90°,
∴∠A+∠C<90°,
即2∠C+∠C<90°,
解得0°<∠C<30°.
![]()
练习册系列答案
相关题目