题目内容
化简,求值: ) ,其中m=.
下列说法中,正确的是 ( )
A.打开电视机,正在播广告,是必然事件
B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
C.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%
D.从一个只装有白球的缸里摸出一个球,摸出的球是白球。
化简:.
若与|x-y-3|互为相反数,则x+y的值为( )
A.3 B.9 C.12 D.27
分解因式:=____________________
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 ,∠CAC′= °.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
求一元二次方程x2+3x-1=0的解,除了课本的方法外,我们也可以采用图像的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图像,则两图像交点的横坐标即该方程的解.类似地,我们可以判断方程x3-x-1=0的解的个数有
A.0个 B.1个 C.2个 D.3个
某物流公司的快递车和货车每天往返于甲、乙两地,快递车比货车多往返一趟.已知货车比快递车早1小时出发,到达乙地后用1小时装卸货物,然后按原路以原速返回,结果与第二趟返回的快递车同时到达甲地.下图表示快递车距离甲地的路程y(km)与货车出发所用时间x(h)之间的函数关系图象.
(1)①请在下图中画出货车距离甲地的路程(km)与所用时间( h)的函数关系图象;②两车在中途相遇次.
(2)试求货车从乙地返回甲地时(km)与所用时间( h)的函数关系式.
(3)求快递车第二次从甲地出发到与返程货车相遇所用时间为多少h?这时货车离乙地多少km?
观察分析下列方程:①x+=3;②x+=5;③;请利用它们所蕴含的规律,求关于x的方程x+=2n+4(n为正整数)的根,你的答案是__________________