题目内容
如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在⊙O及半径OM、OP上,并且∠POM=45°,则AB的长为______.

∵∠POM=45°,∠DCO=90°,
∴∠DOC=∠CDO=45°,
∴△CDO为等腰直角三角形,
那么CO=CD.
连接OA,可得到直角三角形OAB,
∴AB=BC=CD=CO,BO=BC+CO=BC+CD=2AB,
那么AB2+OB2=52,
∴AB2+(2AB)2=52,
∴AB的长为
.

∴∠DOC=∠CDO=45°,
∴△CDO为等腰直角三角形,
那么CO=CD.
连接OA,可得到直角三角形OAB,
∴AB=BC=CD=CO,BO=BC+CO=BC+CD=2AB,
那么AB2+OB2=52,
∴AB2+(2AB)2=52,
∴AB的长为
| 5 |
练习册系列答案
相关题目