题目内容
如图,在等腰直角三角形ABC中,AD为斜边上的高,点E、F分别在AB、AC上,△AED经过旋转到了△CFD的位置.
(1)△BED和△AFD之间可以看成是经过怎样的变换得到的?
(2)AD与EF相交于点G,试判断∠AED与∠AGF的大小关系,并说明理由.
∴DE=DF,AD=CD,
∵在等腰直角三角形ABC中,AD为斜边上的高,
∴AD=AD=BD,∠ADC=∠CDB=90°,
∴∠EDF=90°,
∴△AFD可以看成是△BED绕点D按顺时针方向旋转90°得到的;
(2)∠AED=∠AGF.
理由:∵DF=DE,∠FDE=90°,
∴∠DFE=∠DEF=45°,
∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD=45°,
∵∠AGF=∠DAE+∠AEG=45°+∠AEG,
∠AED=∠DEF+∠AEF=45°+∠AEG,
∴∠AED=∠AGF.
分析:(1)利用旋转的性质得出DE=DF,AD=CD,进而利用等腰直角三角形的性质得出AD=AD=BD,∠ADC=∠CDB=90°,即可得出旋转角以及旋转图形;
(2)利用等腰直角三角形的性质以及外角的性质分别表示出∠AED和∠AGF进而得出答案.
点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,根据已知得出AD=BD=CD是解题关键.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad
的值为( ▼ )
(2)对于
,∠A的正对值sad A的取值范围是 ▼ .
(3)已知
,其中
为锐角,试求sad
的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
根据上述对角的正对定义,解下列问题:
(1)sad
| A. | B.1 | C. | D.2 |
(3)已知
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:![]()
(1)sad
的值为( ▼ )
| A. | B.1 | C. | D.2 |
(3)已知