题目内容
【题目】已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程总有两个不相等的实数根
【答案】
(1)解:把x=1代入方程,
所以a=
,再代入方程,
,解得方程的另一个根为﹣
.
(2)证明:∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,
∴不论a取何实数,该方程都有两个不相等的实数根.
【解析】(1)将x=1代入方程就可求出a的值,再将a的值代入方程,解方程即可求出方程的另一个根。或利用根与系数的关系求解。
(2)先求出b2-4ac的值,再说明b2-4ac>0即可。
【考点精析】利用求根公式和根与系数的关系对题目进行判断即可得到答案,需要熟知根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
练习册系列答案
相关题目