题目内容
(2014天津)如图,从左面观察这个立体图形,能得到的平面图形是( )
A.
B.
C.
D.
如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线(k>0)经过点D,交BC于点E.
(1)求双曲线的解析式;
(2)求四边形ODBE的面积.
如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角仪.
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示);
(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测角仪高度忽略不计).
(2014江苏连云港)如图,若△ABC和△DEF的面积分别为S1,S2,则( )
C.S1=S2
(2014四川凉山)在△ABC中,若,则∠C的度数是( )
A.45° B.60° C.75° D.105°
如图是一个几何体的三视图.
(1)写出这个几何体的名称.
(2)根据图中数据计算这个几何体的表面积.
(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D,请你求出这只蚂蚁所经路线的最短长度.
(2014湖北十堰)在下面四个几何体中,左视图与主视图不相同的是( )
A.B.C.D.
图①②是晓东同学在进行“居民楼高度、楼间距对住户采光影响问题”的研究时画的两个示意图.请你阅读相关文字,解答下面的问题.
(1)图①是太阳光线与地面所成角度的示意图.冬至的正午时刻,太阳光线直射在南回归线(南纬23.5°)B地上,在地处北纬36.5°的A地,太阳光线与地面水平线l所成的角为α,试借助图①求α的度数.
(2)图②是乙楼高度、楼间距对甲楼采光影响的示意图.甲楼地处A地,其二层住户南面窗户的下端距地面3.4m,现要在甲楼正南面建一幢高度为22.3m的乙楼,为不影响甲楼二层住户(一层为车库)的采光,两楼之间的距离至少应为多少米?(精确到1m)
(2014江苏镇江)如图,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,,然后又沿着坡度为i=1︰4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?