搜索
题目内容
如图,已知直线
,直线
,直线
、
分别交x轴于B、C两点,
、
相交于点A。
(1) 求A、B、C三点坐标;
(2) 求△ABC的面积。
试题答案
相关练习册答案
略
解析
练习册系列答案
寒假作业长江少年儿童出版社系列答案
熠光传媒寒假生活云南出版社系列答案
义务教育教科书寒假作业系列答案
学与练寒假生活系列答案
学与练快乐寒假系列答案
学新教辅寒假作业系列答案
期末加寒假系列答案
学生寒假实践手册系列答案
学期总复习状元成才路寒假系列答案
阳光假期学期总复习系列答案
相关题目
如图,已知直线
y=-
1
2
x+1
交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.
(1)直接写出点C和点D的坐标,C(
);D(
);
(2)求出过A,D,C三点的抛物线的解析式及对称轴;
(3)探索:过点E作平行于y轴的直线上是否存在点P,使△PBC为直角三角形?若存在,请求出P点坐标;若不存在,请说明理由.
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙
O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
5
,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
如图,已知直线 l
1
∥l
2
,且 l
3
和l
1
、l
2
分别交于A、B 两点,l
4
和l
1
、l
2
分别交于D、C 两点,点P在直线AB上且点P和A、B不重合,PD和DM的夹角记为∠1,PC和CN的夹角记为∠2,PC和PD的夹角记为∠3.
(1)当∠1=25°,∠3=60°时,求∠2的度数;
(2)当点P在A、B两点之间运动时,∠1、∠2、∠3三个角之间的相等关系是
∠3=∠1+∠2
∠3=∠1+∠2
(3)如果点P在A、B两点外侧运动时,∠1、∠2、∠3三个角之间的相等关系是
当点P在l
1
上方时∠3=∠2-∠1,当点P在l
2
下方时∠3=∠1-∠2
当点P在l
1
上方时∠3=∠2-∠1,当点P在l
2
下方时∠3=∠1-∠2
(4)如果直线l
3
向左平移到l
4
左侧,其它条件不变,∠1、∠2、∠3三个角之间的相等关系是
当点P在A、B两点之间时∠1+∠2+∠3=360°,当点P在l
1
上方时∠3=∠1-∠2,当点P在l
2
下方时∠3=∠2-∠1.
当点P在A、B两点之间时∠1+∠2+∠3=360°,当点P在l
1
上方时∠3=∠1-∠2,当点P在l
2
下方时∠3=∠2-∠1.
(其中(2)、(3)、(4)均只要写出结论,不要求说明).
如图,已知直线a的解析式为y=3x+6,直线a与x轴.y轴分别相交于A.B两点,直线b经过B.C两点,点C的坐标为(8,0).直线a沿x轴正方向平移m个单位(0<m<10)得到直线a′,直线a′与x轴.直线b分别相交于点M.N.
(1)求sin∠BCA的值;
(2)当△MCN的面积为
时,求直线a′的函数解析式;
(3)将△MCN沿直线a′对折得到△MC′N,把△MC′N与四边形AMNB的重叠部分面积记为S,求S关于m的函数解析式,并求当S最大时四边形MCNC′的周长.
如图,已知直线a的解析式为y=3x+6,直线a与x轴.y轴分别相交于A.B两点,直线b经过B.C两点,点C的坐标为(8,0).直线a沿x轴正方向平移m个单位(0<m<10)得到直线a′,直线a′与x轴.直线b分别相交于点M.N.
(1)求sin∠BCA的值;
(2)当△MCN的面积为
时,求直线a′的函数解析式;
(3)将△MCN沿直线a′对折得到△MC′N,把△MC′N与四边形AMNB的重叠部分面积记为S,求S关于m的函数解析式,并求当S最大时四边形MCNC′的周长.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案