题目内容

已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,3)三点,连接AB,过点B作BC∥轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动,动点E、F有一个点到达目的点即停止全部运动.设动点运动的时间为t(秒).

【小题1】求抛物线的解析式
【小题2】记△EFA的面积为S,求S关于t的函数关系式,并求S的最大值;
【小题3】是否存在这样的t值,使△EFA是直角三角形?若存在,求出此时点E的坐标;若不存在,请说明理由.

【小题1】根据题意得-------------1分
解得,所以-----------------2分
【小题2】过点B作BM⊥x轴于M,

则BM=3,OM=3,∵OA=4,所以AM=1,
AB=
时,,过点F作FH⊥x轴,因为
,∴
------------4分
时,如图,
------------6分
时,处取得面积最大值,最大值为
时, 处取得面积最大值,最大值为
综上,所以当x=2时,取得面积最大值.------------8分
【小题3】当时,
若∠EFA=90°,可得,得,即,得,

此时,点.------------10分
当∠FEA=90°时,可得,得
,得,
此时,点.------------12分
时,∠FEA一定为钝角,符合题意的三角形不存在.------------14分解析:
(1)将三点的坐标代入,利用待定系数法求解即可得出答案.
(2)过点B作BM⊥x轴于M构建Rt△ABM,由点B的坐标可以求得BM=,OM=3,由点A的坐标可以求得OA=4,根据图形可知AM=1,在该三角形中利用勾股定理可以求得AB=2,所以根据直角三角形的边角关系可以推知∠BAM=60°;最后根据t的不同取值范围进行分类讨论,并求得相应的S的值,通过比较即可求得S的最大值;
(3)需要分类讨论:①当0≤t≤2时,若∠EFA=90°,此时∠FEA=30°,在直角三角形中根据三角函数的定义可以求得t=,据此可以求得相应的电E、F的坐标;
②当∠FEA=90°时,此时∠EFA=30°,在直角三角形中根据三角函数的定义可以求得t=,故这种情况不存在;
③当2<t≤4时,有t-2+t=3,即t=2.5,据此可以求得相应的电E、F的坐标.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网