题目内容
【题目】已知:如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:
(1)梯形ABCD与梯形A′B′C′D′的相似比k;
(2)A′B′和BC的长;
(3)D′C′∶DC.
![]()
【答案】(1)k=2∶3;(2)A'B'=9,BC=8;(3)3∶2.
【解析】
根据相似多边形的对应边成比例列式计算即可求出.
∵梯形ABCD∽梯形A′B′C′D′相似,
∴AD:A′D′=4:6=2:3;
(2)由(1)知AB: A′B′= AD:A′D′=2:3,
∵AB=6,
∴A′B′=9;
同理可得,BC=8;
(3)∵梯形ABCD∽梯形A′B′C′D′相似,
∴D′C′∶DC= A′D′:AD=3:2.
练习册系列答案
相关题目