题目内容
下列各式中,是的二次函数的是( )
A.
B.
C.
D.
如图,C为线段AB的中点,CD平分∠ACE,CE平分∠BCD,且CD=CE,求证:△ACD≌△BCE.
a,b两数在数轴上的位置如图所示,下列结论中正确的是( )
A.a<0,b>0 B.a+b<0 C.ab>0 D.a﹣b<0
若关于的有实数根,则的取值范围是_______.
九年级(3)班的全体同学,在新年来临之际,在贺卡上写上自己的心愿和祝福赠送给其他同学各一张,全班共互赠了5112张,设全班有x名同学,列出的方程是( )
如图,在等腰直角△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在边AC、BC边上,且AD=CE.连接DE、DF、EF.
(1)求证:△ADF≌△CEF;
(2)试判断△DFE的形状,并说明理由.
如图,为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .
如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.
(1)求的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )
A.①② B.①③ C.②③ D.①②③