题目内容
如图,AD是△ABC的高线,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD.求证:AD=BD.
2017·自贡 我国明代数学家程大位的名著《算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人.设大、小和尚分别有x人,y人,则可以列方程组:______________.
认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究1:如图l,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90+∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线
∴∠1=∠ABC, ∠2=∠ACB
∴∠l+∠2=(∠ABC+∠ACB)= (180-∠A)= 90-∠A
∴∠BOC=180-(∠1+∠2) =180-(90-∠A)=90+∠A
(1)探究2;如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)
某班有x人,分y组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人.求全班人数,下列方程组中正确的是( )
A. B. C. D.
如图,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.试说明:∠BAP+∠BCP=180°.
如图2,PM⊥OA,PM=1,当点P到OB的距离为______时,∠POA=∠POB.
下列条件中,不能判定两个直角三角形全等的是( )
A. 两个锐角对应相等 B. 一条直角边和一个锐角对应相等
C. 两条直角边对应相等 D. 一条直角边和一条斜边对应相等
(2008•茂名)用平面去截下列几何体,截面的形状不可能是圆的几何体是( )
A. 球 B. 圆锥 C. 圆柱 D. 正方体
如图,如果AD∥BC,AD=BC,AC与BD相交于O点,则图中的全等三角形一共有( )
A. 3对 B. 4对 C. 5对 D. 6对