题目内容
如图是百度地图的一部分(比例尺1:4 000 000).按图可估测杭州在嘉兴的南偏西________度方向上,到嘉兴的实际距离约为________.
如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是( )
A.8 B.12 C.16 D.17
计算:﹣|﹣2|+﹣4sin60°.
类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.
(2)问题探究
①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。
②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB'方向平移得到△A'B'C',连结AA',BC'.小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)?
(3)应用拓展
如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD为对角线,AC=AB.试探究BC,CD,BD的数量关系.
(1)计算:|-5|+x2-1;
(2)化简:a(2-a)+(a+1)(a-1).
如图,中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则☉C的半径为( )
(A)2.3 (B)2.4 (C)2.5 (D)2.6
(本题满分12分)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时
cos∠BPC的值;若不存在,请说明理由。
不等式组的最大整数解为( )
A.8 B.6 C.5 D.4
下列合并同类项正确的是( )
A. 3x+y=4xy B. 2x2+3x2=5x4 C. 6x2﹣3x2=3 D. 5xy﹣3xy=2xy