题目内容
50°
50°
.分析:首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.
解答:
解:连接OC,
∵CE是⊙O的切线,
∴OC⊥CE,
即∠OCE=90°,
∵∠COB=2∠CDB=40°,
∴∠E=90°-∠COB=50°.
故答案为:50°.
∵CE是⊙O的切线,
∴OC⊥CE,
即∠OCE=90°,
∵∠COB=2∠CDB=40°,
∴∠E=90°-∠COB=50°.
故答案为:50°.
点评:此题考查了切线的性质与圆周角定理.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目